【交流回路の基本】 正弦波交流の平均値と実効値

電気電子

電気電子系は難しいイメージを持たれがちですが、基本から順番に抑えていけばそれほど難しくはありません。
どんな分野にも言えることですが、最初はよくわからないものですから。
本記事では、電気初心者の方でもわかりやすいように、順を追って説明していきます。
じっくり学んでいきましょう!

今回は、「正弦波交流の平均値と実効値」についての説明です。

1.ポイント

正弦波交流の平均値

平均値=(2/π)×最大値

正弦波交流の実効値

実効値=(1/√2)×最大値

2.正弦波交流の平均値

平均値は、量記号Va、Iaのように小文字のaが付きます。aはaverage(平均)です。
正弦波交流の平均値とは、波形の1/2周期(山1個分)を平らにならして平均した値のことを指します。

図1

左図の斜線部が波形の1/2周期に該当するので、右図のように平らにして同面積の長方形を作った時の辺の高さが平均値(2/π×Vm)に当たります。
つまり、式で表すと以下のようになります。

3.正弦波交流の実効値

実効値は、量記号V、Iと書きます。
抵抗に交流電圧を与えた際の電力と、同じ抵抗直流電圧を与えた際の電力が等しくなる時、この交流電圧/電流の実効値は直流電圧/電流と等しくなると定義されています。
簡単に言えば、ある直流電圧/電流と同じ働きをする交流電圧/電流が実効値です

実効値は、瞬時値を2乗(Square)し、平均(Mean)し、平方根(Root)にした値なので、略してRMSとも呼びます
順番的にはSMRなのになんでRMSなんでしょうね?

最大値を√2で割った値が実効値に当たるので、式で表すと以下のようになります。

※ 平均値及び実効値が何故このような値になるのか説明すると本筋から大きく外れていくので、次以降の記事で説明します。

ちなみに、交流の波形の表し方に、波高率波形率というものがあります。

以上、「正弦波交流の平均値と実効値」についての説明でした。


タイトルとURLをコピーしました